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Quaternionic Weber Local Descriptor
of Color Images

Rushi Lan, Yicong Zhou, Senior Member, IEEE, and Yuan Yan Tang, Fellow, IEEE

Abstract— This paper proposes a simple but effective
framework named quaternionic Weber local descriptor (QWLD)
for color image feature extraction. Integrating quaternionic
representation (QR) of the color image and Weber’s law (WL),
QWLD possesses both their superiorities. It uses QR to han-
dle all color channels of the image in a holistic way while
preserving their relations, and applies WL to ensure that
the derived descriptors are robust and discriminative. Using
the QWLD framework, we further develop the quaternionic-
increment-based Weber descriptor and quaternionic-distance-based
Weber descriptor in terms of different perspectives. Extensive
experiments on different color image recognition problems
demonstrate that the proposed framework and descriptors
outperform state-of-the-art local descriptors.

Index Terms— Color image descriptor, local feature,
quaternionic representation (QR), Weber’s law (WL).

I. INTRODUCTION

RECENTLY, the quaternion number system [1] has
aroused a great deal of research interest in the field of

color image processing [2]–[5]. A quaternion consists of one
real and three imaginary parts, and the imaginary parts are
usually applied to encode three components of a color image.
In this paper, we call this coding strategy as quaternionic
representation (QR) of color images. There are two main
advantages of color image processing using QR. First, we can
handle all color components of these images in a holistic way
and consider the relations among the components; Second,
quaternion algebra is a mature discipline that has a plenty of
theories and tools for image processing. Therefore, QR has
been involved into many applications in color images and
4-D signal processing [6]–[11].

Due to the superiorities of QR, a lot of attention has been
paid to extracting features for color images using QR. These
features are hand-crafted representations of color images.
Generally speaking, the existing QR-based feature extraction
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methods can be classified into two types: global descriptors
and local descriptors.

It is intuitive to extend complex-number-based descriptors
to their corresponding quaternionic versions to derive features
from color images. Several global quaternionic descriptors
have been developed based on this idea. The proposed
descriptors include the quaternionic Zernike moment descri-
ptors [12], [13], quaternionic Fourier–Mellin moment [14]
and its orthogonal version [15], quaternion pseudo-Zernike
moment [15], geometric Fourier descriptor [16], hypercomplex
polar Fourier descriptor [17], and quaternion moment
descriptors [18]. These descriptors achieve satisfying perfor-
mance in classifying the objects under similar transformations
(rotation, scaling, and translation). However, if images con-
tain more complicated changes (large pose or illumination
variations), these global descriptors do not work well any
more.

In order to derive more robust and discriminative
descriptors, local information of the image is considered.
Many local descriptors [19]–[25] have been developed for
grayscale and color images. It is difficult to directly extend
them in the quaternionic domain. The reason lies in that the
arithmetics of quaternions are different from those of real
numbers. Thus, designing complicated local descriptors in
quaternionic domain is a tough task. It is more realistic to
develop some simple local descriptors using QR.

The well-known local binary pattern (LBP) has been
extended to the quaternionic domain [26]. A descriptor named
quaternionic LBP (QLBP) was developed. To perform the
LBP coding, QR is first Clifford translated [27] by one unit
quaternion. This operation may cause the following problems.
First, it is difficult a find a suitable quaternion for all color
images. Second, this is a global operation to QR so that some
local characteristics will be ignored. From this point, QLBP is
not a totally local descriptor.

Meanwhile, several local descriptors have been proposed
using Weber’s law (WL) [28] that describes the ratio between
the increment and initial intensity of a stimulus in the human
visual system. WL is able to measure the local variation of the
image contents in a relative manner. Numerous research results
have shown that the derived descriptors are robust to different
variations and show good discriminative abilities [29]–[31].
However, for a color image, these types of descriptors are
usually extracted from its grayscale version or from each color
channel individually. They illustrate the local characteristics
of the color image without considering the relations between
color channels.
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TABLE I

SUMMARY OF ABBREVIATIONS AND SYMBOLS USED IN THIS PAPER

In this paper, a novel framework called quaternionic Weber
local descriptor (QWLD) is proposed for color image feature
extraction. QWLD applies WL in the quaternionic domain
such that the derived descriptors absorb both advantages of
WL and QR. To show how to derive new descriptors using
the QWLD framework, two descriptors, namely, quaternionic-
increment-based Weber descriptor (QIWD) and quaternionic-
distance-based Weber descriptor (QDWD), are proposed as
examples. They are based on different strategies to describe
the increment and intensity of WL in the quaternionic domain.
Experiments are carried out to evaluate the proposed descrip-
tors by different applications, and comparison results show
their effectiveness.

In summary, our main contributions are listed as follows.
1) We propose the QWLD framework for color image

feature extraction. To the best of our knowledge, this
is the first time to derive local descriptors using WL in
the quaternionic domain for color images.

2) We further develop two novel descriptors, QIWD
and QDWD, as examples derived from the QWLD
framework. They are derived by considering WL from
different perspectives and studied theoretically and
experimentally.

3) We conduct a number of experiments on different
color image recognition problems to evaluate the perfor-
mances of the proposed descriptors by comparing with
several state-of-the-art local descriptors.

The rest of this paper is organized as follows. Section II
introduces some related preliminaries. Section III presents
the proposed QWLD framework. Sections IV and V describe
two novel local descriptors based on the QWLD framework.
Sections VI and VII give the experimental results and eval-
uations of the proposed descriptors. Section VIII gives the
conclusion.

II. PRELIMINARIES

In this section, the related preliminary knowledge, including
the quaternion algebra, existing quaternionic distances (QDs),
and WL, will be given briefly. For easy reading, Table I lists
the relevant abbreviations and symbols used in this paper.

A. Quaternion Algebra

A quaternion q̇ ∈ H consists of one real part and three
imaginary parts as follows:

q̇ = a + ib + jc + kd (1)

TABLE II

BASIC PROPERTIES OF THE QUATERNION

where a is the real part of q̇ and {ib, jc, kd} are the imaginary
parts, and a, b, c, d ∈ � and i , j , and k are complex operators.

Let S(q̇) = a and V (q̇) = ib + jc + kd . Except for the
algebraic version in (1), q̇ can be represented in the polar
form as follows:

q̇ = |q̇|eμ̇θ = |q̇|(cos θ + μ̇ sin θ) (2)

where μ̇ = (V (q̇)/|V (q̇)|) and θ = tan−1(|V (q̇)|/S(q̇))
are known as the eigenaxis and phase (or eigenangle) of q̇.
Usually, V (q̇) is employed to represent the color image

Q̇(x, y) = i R(x, y) + j G(x, y) + k B(x, y) (3)

where Q̇(x, y) is QR of the color pixel located at (x, y) in an
image, and R(x, y), G(x, y), and B(x, y) are its red, green,
and blue components, respectively.

Several basic properties of the quaternion are described
in Table II.

Some properties can be similarly derived as the complex
number system, like conjugate, modulus, and inverse of the
quaternion. q̇ is called a pure quaternion if its real part a
equals 0. Note that the multiplication of two quaternions is
noncommutative, namely, q̇1q̇2 �= q̇2q̇1, but its modulus keeps
the same, i.e., |q̇1q̇2| = |q̇1||q̇2| = |q̇2||q̇1|.

Based on these properties, several quaternionic operators
have been proposed, such as rotation and Clifford translation.
The rotation of q̇ by a unit one ṗ, denoted by ROQ(q̇, ṗ), is
defined as

ROQ(q̇, ṗ) = ṗq̇ ṗ∗. (4)

Equation (4) shows that rotation of quaternion is a double
action manifold of the quaternion [27]. There also exists
a single-action manifold, named the Clifford translation of
quaternion (CTQ). The right and left CTQs of q̇ by ṗ are
defined by

CTQr (q̇, ṗ) = q̇ ṗ and CTQl(q̇, ṗ) = ṗq̇ (5)

where ṗ is a unit quaternion.

B. Review of QDs

To handle quaternions, one key step is to measure QDs.
Considering two color pixels, q̇1 = r1i + g1 j + b1k and
q̇2 = r2i + g2 j + b2k, Dt (q̇1, q̇2) denotes the tth type of
QD of q̇1 and q̇2. Because the modulus of a quaternion is
nonnegative, it is intuitive to derive the following QD:

D1(q̇1, q̇2) = |q̇1 − q̇2|. (6)
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Cai and Mitra [32] pointed out that the intensity
and chromaticity components of q̇1 can be obtained by
(ρ̇q̇1ρ̇

∗ + ρ̇∗q̇1ρ̇)/2 and (ρ̇q̇1ρ̇
∗ − ρ̇∗q̇1ρ̇)/2, respectively,

where ρ̇ = e(π/4)μ̇. Then the following QDs are defined:
D2(q̇1, q̇2) = 1

2
|(ρ̇q̇1ρ̇

∗ + ρ̇∗q̇1ρ̇) − (ρ̇q̇2ρ̇
∗ + ρ̇∗q̇2ρ̇)| (7)

D3(q̇1, q̇2) = 1

2
|(ρ̇q̇1ρ̇

∗ − ρ̇∗q̇1ρ̇) − (ρ̇q̇2ρ̇
∗ − ρ̇∗q̇2ρ̇)|. (8)

Considering the intensity and chromaticity differences
together, Geng et al. [33] proposed the following QD:

D4(q̇1, q̇2) = D2(q̇1, q̇2) + D3(q̇1, q̇2). (9)

Jin and Li [34] proposed a method in which they first rotate
one quaternion toward the gray line μ̇ and combine the result
with the other quaternion, that is

q̇3 = q̇2 + μ̇q̇1μ̇
∗ = r3i + g3 j + b3k. (10)

If q̇1 and q̇2 are closed to each other, q̇3 should be close to
the gray line. They then derived the following QD:

D5(q̇1, q̇2) = |(r3 − χ)i + (g3 − χ) j + (b3 − χ)k| (11)

where χ = (r3 + g3 + b3)/3. Later, Jin et al. [4] improved
D5(q̇1, q̇2) by including the luminance as follows:

D6(q̇1, q̇2) = ωD5(q̇1, q̇2) + (1 − ω)|I (q̇1, q̇2)| (12)

where I (q̇1, q̇2) = k1(r2 − r1) + k2(g2 − g1) + k3(b2 − b1) is
the luminance difference and ω gives the importance between
the chromaticity and luminance difference. ki (i = 1, 2, 3)
represents the contributions of different color channels to
luminance.

A detailed analysis of these QDs is not given here because
it goes beyond the scope of this paper. It needs to point
out that though D3(q̇1, q̇2) and D5(q̇1, q̇2) were derived by
different researchers from different perspectives, there exists
the following relation:

D3(q̇1, q̇2) = D5(q̇1, q̇2). (13)

The proof of (13) is given in the Appendix.

C. Weber’s Law

WL was proposed by the experimental psychologist E.
Weber in the 19th century. It shows that the ratio of increment
threshold in a stimulus (�I ) to the initial stimulus intensity (I )
is a constant, which can be expressed as follows:

�I

I
= ϑ (14)

where ϑ is a constant and is called the Weber fraction.
Equation (14) also implies that the stimulus can be perceived
in a relative way but not the absolute increment. A small ϑ
indicates that a small percentage change in intensity is discrim-
inable, while a large one means that a large degree change in
intensity is required.

III. QWLD FRAMEWORK

This section presents the proposed QWLD framework in
detail. Based on this framework, two novel descriptors will be
introduced as implementation examples of QWLD.

Fig. 1. QWLD framework.

A. QWLD Framework

The underlying fundamental of QWLD is to apply WL in
the quaternion domain to derive the local descriptor for a color
image. Fig. 1 shows the framework of QWLD. QWLD consists
of two major components, namely, the differential feature and
orientation feature. They are extracted from QR of a color
image.

In (14), the key step of QWLD is to calculate the increment
in QR of the color image. Let q̇c be the center quaternion in
a local patch within a color image, and q̇l, l ∈ L denotes
the rest quaternions in the patch, where L is the index set.
We use 	(q̇c) to denote the QWLD feature of q̇c, and it can
be achieved as follows:

	(q̇c) = 
(q̇c) � �(q̇c) (15)

where 
(q̇c) and �(q̇c) are the differential and orientation
features of q̇c, respectively, and � is an operator to fuse two
features.

1) Differential Feature: 
(q̇c) is directly derived from
WL in (14) and is represented as follows:


(q̇c) =
∑

l∈L �(q̇c, q̇l)

�(q̇c)
(16)

where �(q̇c, q̇l) is the quaternionic increment between
q̇c and q̇l and �(q̇c) denotes the quaternionic intensity of q̇c.
Unlike the spatial-domain increment of the grayscale image
that is directly calculated using pixel values, in the quater-
nionic domain, we need to find a proper function to denote the
illumination increment of quaternions and a function to
represent the intensity of a quaternion. Note that (16) considers
the relationship between the center pixel and all its surround-
ing ones.

2) Orientation Feature: Orientation information, like
the edge, contains rich characteristics of images. To make
the derived feature more robust, QWLD also considers the
orientation feature. Let L1 ⊂ L and L2 ⊂ L be two subsets
of L. The elements in L1 and those in L2 are distributed
in different orientations within the local region. Then the
orientation feature of QWLD �(q̇c) is defined as

�(q̇c) =
∑

l∈L1
�(q̇c, q̇l)

∑
l∈L2

�(q̇c, q̇l)
(17)

where �(q̇c, q̇l) has the same meaning as in (16). L1 and L2
are two different subsets of L with a small overlapping such
that more contrast characteristics of the local region can be
extracted. For instance, L1 contains the points in the horizontal
direction, while L2 consists of the points in the vertical
direction. Note that it is possible to derive 
(q̇c) and �(q̇c)
using different �(q̇c, q̇l).
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3) Feature Fusion: 
(q̇c) and �(q̇c) represent two different
characteristics of color images in the quaternionic domain.
A fusion step is necessary to strengthen their discriminative
abilities before recognition. There exist many methods to
fuse 
(q̇c) and �(q̇c). One simple way is to concatenate
two feature vectors together to obtain a new vector, namely,
	(q̇c) = [
(q̇c); �(q̇c)]. Other methods like 2-D histogram
can also be used.

The QWLD framework in Fig. 1 shows the main skeleton
of extracting QWLD features. WL regards the relative color
contrast as local features that are robust and discriminative
characteristics of the color image. Meanwhile, QR ensures that
all color information is taken into account in the color contrast
extraction procedure. QWLD combines QR and WL and takes
both their advantages. Using the framework, we are able to
derive different QWLD features by considering various types
of quaternionic increments.

B. Two Implementation Examples

For QR of a color image, we need to develop
proper �(q̇c, q̇i ) and �(q̇c) for QWLD. Using different
�(q̇c, q̇i ) and �(q̇c) allows us to represent different char-
acteristics of the color image. As examples, we apply two
strategies to propose QWLDs of the color image from different
perspectives.

1) QIWD: It is intuitive to consider the increment in the
quaternionic domain directly. Based on this idea and
WL, we propose QIWD.

2) QDWD: QDs discussed in Section II-B were proposed
from different viewpoints to measure the similarity
between two quaternions. They are also considered as
the increments between two quaternions. Applying them
to the QWLD framework, we propose QDWD.

QIWD directly implements WL in the quaternionic domain.
The quaternionic operations provide a new understanding
to local descriptor extraction. On the other hand, QDWD
applies QDs to WL framework. These QDs are developed to
detect the outliers in color images. They describe the essential
relation between pixels and will benefit to QDWD for feature
extraction. Next, we present these two QWLDs in detail in the
following sections.

IV. QUATERNIONIC-INCREMENT-BASED

WEBER DESCRIPTOR

As aforementioned, QIWD calculates the increment directly
in the quaternionic domain. In this section, we will detail the
derivation of QIWD. Consider a 3 × 3 local patch in a color
image with QR as follows:

⎡

⎢
⎣

q̇0 q̇1 q̇2

q̇7 q̇c q̇3

q̇6 q̇5 q̇4

⎤

⎥
⎦ (18)

where q̇c is the center pixel and q̇l (l ∈ L = {0, . . . , 7})
are surrounding ones. Denote the differential and orien-
tation features of QIWD for q̇c by 
1(q̇c) and �1(q̇c),
respectively.

A. Differential Feature

To obtain 
1(q̇c), we need to obtain the increment first.
Based on QR, we use � İ to denote the increment and
İ to represent the initial stimulus intensity. Then � İ can be
achieved as follows:

� İ =
l=7∑

l=0

�q̇l =
l=7∑

l=0

(q̇l − q̇c). (19)

In this situation, we have İ = q̇c. However, we cannot
directly calculate (� İ/ İ ) as shown in (14) because there is
no division operation for quaternions. To address this problem,
we apply the inverse to replace İ in the denominator. Due to
the noncommutativity of multiplication for quaternion, it has
the following:

İ−1� İ �= � İ İ−1 (20)

where İ−1 is the inverse of İ .
To clearly understand (20), we analyze � İ and İ−1 by

considering the color space. Based on the notations used
in (3) and (18), the center pixel in the local patch and its
surrounding ones are denoted by q̇c = i Rc + j Gc + k Bc and
q̇l = i Rl + j Gl + k Bl, l = 0, 1, . . . , 7. Then (19) turns to

� İ =
l=7∑

l=0

(q̇l − q̇c)

=
l=7∑

l=0

[(i Rl + j Gl + k Bl) − (i Rc + j Gc + k Bc)]

=
l=7∑

l=0

[i(Rl − Rc) + j (Gl − Gc) + k(Bl − Bc)]

= iϒR + jϒG + kϒB (21)

where ϒR = ∑l=7
l=0(Rl − Rc), ϒG = ∑l=7

l=0(Gl − Gc), and
ϒB = ∑l=7

l=0(Bl − Bc). Observing the above equation, we can
find that it captures all intensity differences between the center
pixel and its surrounding ones in all color channels at the same
time.

To İ−1, using the definition of the quaternion’s inverse, it
has the following:

İ−1 = − i Rc + j Gc + k Bc

R2
c + G2

c + B2
c

= − i Rc + j Gc + k Bc

|q̇c|2 . (22)

Equation (22) indicates that there are two changes to q̇c when
considering its inverse. First, the direction of q̇c in the color
space turns to its opposite way. Second, the modulus of q̇c is
modulated. Note that this modulation is not the same as the
unitization of q̇c.

By considering (21) and (22) together, we can obtain the
following result:

İ−1� İ = − (i Rc + j Gc + k Bc)(iϒR + jϒG + kϒB)

|q̇c|2

= −1

|q̇c|2 [−(RcϒR + GcϒG + BcϒB)

+ i(GcϒB − BcϒG ) + j (BcϒR − RcϒB)

+ k(RcϒG − GcϒR)]. (23)
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� İ İ−1 can similarly be calculated, and they have the
following relation:

İ−1� İ = (� İ İ−1)∗. (24)

It is not difficult to find that the phases of a quaternion and
its conjugate one are the same, namely

θ İ−1� İ = θ� İ İ−1 . (25)

On the other hand, we can understand İ−1� İ in the
following perspective:

İ−1� İ = q̇c
−1

l=7∑

l=0

(q̇l − q̇c) =
l=7∑

l=0

(q̇c
−1q̇l − 1). (26)

In the above equation, İ−1� İ consists of two parts: q̇c
−1q̇l

and a real number 1. The real number can be regarded as a
modulation of the real part of q̇c

−1q̇l . Note that the real part
directly relates to the phase of a quaternion. In order to flexibly
modulate the real and imaginary parts in (26), we generalize
it into the following form:

˙̂I−1� İα =
l=7∑

l=0

(
q̇c

−1q̇l − α
)
. (27)

Note that even if we introduce a parameter α in (27), it still
has the following:

θ
̂İ−1� İα

= θ
̂� İ İ−1

α
. (28)

In this work, the phase of θ
̂İ−1� İ α

is used as the differential
excitation of q̇c as follows:


1(q̇c) = θ
̂İ−1� İ α

. (29)

In practice, 
1(q̇c) can be efficiently calculated. If we
compute (21) in a pixel-wise way, the computation cost
will be large. It can also be achieved by performing the
2-D convolution of the quaternionic matrix Q̇ and the
following matrix:

⎡

⎣
1 1 1
1 −8 1
1 1 1

⎤

⎦. (30)

After that, the rest calculations for 
1(q̇c) (like the inverse,
modulation, and phase) can be calculated by the matrix
operation.

Take the color image shown in Fig. 2(a) as an example.
Its differential features of QIWD are shown in Fig. 2(b)–(e).
The parameter α here is set to 0.95, 1, 1.05, and 1.1,
respectively. We can observe that there is still a shape of the
human body in each image. α strongly affects the extracted
feature. Different characteristics can be emphasized by setting
with variant α values.

B. Orientation Feature

For the sake of convenience, the difference of points on the
same line is used as the orientation feature. Based on a local
region given in (18), this difference, denoted by �Om , can be
achieved as follows:

�Om = q̇m+4 − q̇m (31)

Fig. 2. Image and its QIWD features. (a) Original color image.
(b)–(e) Differential features of QIWD by setting α to 0.95, 1, 1.05, and 1.1,
respectively. (f)–(i) Orientation features of QIWD obtained by different
matrix pairs.

where m = 0, 1, 2, 3. As shown in (17), the ratio of
two orientation differences, �Om and �On (m �= n),
is considered. Similar to the proposed differential excitation,
we apply �Om�O−1

n or �O−1
n �Om to replace the ratio of

two quaternions. They have the following relation too:
θ�Om�O−1

n
= θ�O−1

n �Om
. (32)

Therefore, we develop the orientation feature of q̇c as
follows:

�1(q̇c) = θ�Om�O−1
n

. (33)

By setting m and n to different values, we can achieve different
orientation features of q̇c.

Note that there are several different combinations of m and n
in (33). If m and n are set with two adjacent integers (|m−n| =
1), �Om�O−1

n may close to 1 in most situations. In order to
extract more robust orientation features, we set m and n on
the condition that they satisfy |m − n| = 2. That is to say, the
points on two orthogonal lines are considered to propose the
orientation characteristics for QIWD.

As the differential excitation extraction, the orientation
feature can be achieved efficiently too. Denote the following
matrices by �m , m = 0, . . . , 3, respectively:

⎡

⎣
−1 0 0
0 0 0
0 0 1

⎤

⎦,

⎡

⎣
0 −1 0
0 0 0
0 1 0

⎤

⎦,

⎡

⎣
0 0 −1
0 0 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0
1 0 −1
0 0 0

⎤

⎦. (34)

�0 and �2 capture the differences in the diagonal directions,
and �1 and �3 represent the differences in the vertical
and horizontal orientations, respectively. Then �Om can be
obtained by convoluting the QR of the color image with corre-
sponding �m . The rest operations will be quickly implemented
in the matrix way.
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θ İ−1� İ = tan−1

√
(GcϒB − BcϒG)2 + (BcϒR − RcϒB)2 + (RcϒG − GcϒR)2

−(RcϒR + GcϒG + BcϒB)
(38)

Similarly, the orientation features of QIWD for Fig. 2(a)
are shown here. As aforementioned, �(q̇c) considers the
relationship of differences in two orientations. Based on the
matrices given in (34), we select the following pairs to derive
�(q̇c): (�0,�2), (�0,−�2), (�1,�3), and (�1,−�3). The
corresponding results are shown in Fig. 2(f)–(i). We can
find that it is difficult to find the shape of the human body
in Fig. 2(f) and (g), while Fig. 2(h) and (i) shows a clear
shape of the human body.

C. Discussion

Here, we discuss the proposed QIWD from different
perspectives. First, QIWD needs to calculate the multiplication
between a quaternion and the inverse of another one in the
derivation of QIWD (like İ−1� İ and �Om�O−1

n ). Note that
this multiplication is not equivalent to CTQ in most cases.1

Performing CTQ on two different quaternions, q̇m and q̇n , with
a unit quaternion ṗ, we have

| ṗq̇m − ṗq̇n| = | ṗ||q̇m − q̇n| = |q̇m − q̇n|. (35)

Thus, CTQ keeps the distance between quaternions.
If ṗ is a pure and nonunit quaternion, its inverse is as

follows:

ṗ−1 = ṗ∗

| ṗ|2 = − 1

| ṗ| p̈ (36)

where p̈ = ( ṗ/| ṗ|) is the unitization of ṗ such that | p̈| = 1.
In this situation, we can achieve the following result:

| ṗ−1q̇m − ṗ−1q̇n| = 1

| ṗ| |q̇m − q̇n|. (37)

Comparing with (35), (37) contains a coefficient (1/| ṗ|).
If ṗ is a nonunit quaternion set to different values, the results
of (37) will differ.

In [26], a descriptor named quaternionic LBP was proposed.
QLBP performs CTQ on the QR of the color image with
a quaternion such that all points are translated in a whole
way in the quaternionic space. Considering QIWD, as shown
in (37), the used multiplication scales the distance between
quaternions, and the degree of scaling is determined by the
modulus of the center pixel. Therefore, QIWD is adaptive and
represents local characteristics.

On the other hand, the phase of the multiplication of
two quaternions is used for QIWD. Considering the phase
of İ−1� İ in (23), it has (38), as shown at the top of this page.

Equation (38) does not simply consider the ratio of the
increment to the initial intensity as shown in (14). It actually
describes the similarity of two vectors, namely, the intensity
of center pixel (Rc, Gc, Bc)

T and its total difference with
surrounding ones (ϒR, ϒG , ϒB)T . In (38), the denominator

1When | İ | = 1, İ−1� İ is the CTQ of � İ with İ−1. �Om�O−1
n is of the

same situation.

is the inner product of these two vectors, while the numerator
is the total difference of all two color components. If the
two vectors are closed to each other, the value of θ İ−1� İ
will be large. The parameter α used in (27) will influence
the denominator of (38), which is applied to modulate the
correlation and difference of the two vectors.

Similarly, the orientation feature θ�Om�O−1
n

of QIWD can

also be analyzed as (38). The difference lies in that (38) illus-
trates the relation between (Rc, Gc, Bc)

T and (ϒR, ϒG , ϒB)T ,
while θ�Om�O−1

n
considers the relation between (Rm+4 − Rm ,

Gm+4 − Gm, Bm+4 − Bm)T and (Rn+4 − Rn, Gn+4 − Gn ,
Bn+4 − Bn)

T , which are the differences of points in two lines.
As a result, θ�Om�O−1

n
considers the local feature of the color

image in another perspective.
Although Weber local descriptor (WLD) and QWLD are

both based on WL, QIWD includes a deeper relationship
between pixels than WLD. The essential principle of the
WL-based descriptor lies in that they use the local contrast
between pixels as the features. WLD extracts the contract
directly using the intensities of pixels, which is similar to the
first-order gradient of the image. On the contrary, QIWD first
calculates the total color contrasts between the central pixel
and its surrounding ones (ϒR , ϒG , ϒB)T , and then consid-
ers the differences between these contrasts and the center
pixel (Rc, Gc, Bc)

T in the form of (GcϒB − BcϒG ) that
can be regarded as the second-order gradient of the image.
Therefore, features derived by QIWD are more robust to differ-
ent variations and contain more discriminative characteristics
of the image.

In practice, images are usually captured in unwanted
environments, like the poor light condition, occlusion, or
change of the view angle. Hence, the developed local descrip-
tor is expected to be robust against these variations. To this
end, the dense local histogram is extracted from overlapping
cells in the QWLD result. In this work, the centers of all
these cells have a uniform distribution. The histogram con-
tains 16 bins, and it is normalized such that its sum is 1.
Finally, concatenating the normalized histograms generates the
QWLD feature representation of the original color image.

V. QUATERNIONIC-DISTANCE-BASED

WEBER DESCRIPTOR

In this section, we introduce the proposed QDWD in detail.
The local patch in (18) is used here too. Denote the differential
and orientation features of QDWD by 
2(q̇c) and �2(q̇c),
respectively.

A. QDWD

QDs measure the similarity between two quaternions.
The higher similarity corresponds to a smaller distance.
If two quaternions have a large distance, there must be
some increment between them to reduce the similarity.
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Fig. 3. QDWD features of Fig. 2(a). (a)–(e) Differential features of QDWD
using different QDs. (f)–(j) Corresponding orientation features.

Therefore, it is reasonable to apply QDs to describe the
quaternionic increment between quaternions. In (16), it has
�(q̇c, q̇l) = Dt (q̇c, q̇l) in this situation. Using different QDs,
the derived QDWD will differ too. Let 
t

2(q̇c) denote the
differential feature of QDWD derived by Dt .

Then the total quaternionic increment in this local patch can
be represented as

∑l=7
l=0 Dt (q̇l, q̇c). To derive 
t

2(q̇c), we also
need to find the quaternionic intensity �(q̇c) for q̇c in (16).
In this work, the modulus of q̇c, |q̇c|, is used as the quater-
nionic intensity. It is the actually Euclidean distance of q̇c

and the original point in the color space. Then 
t
2(q̇c) can be

achieved as follows:

t

2(q̇c) = arctan

(∑
l∈L Dt (q̇l, q̇c)

|q̇c|
)

. (39)

The nonlinear mapping arctan(·) is used here to make 
t
2(q̇c)

more robust [30].
Note that in 
t

2(q̇c), the increments in all directions are
considered. Unlike 
t

2(q̇c), the orientation feature of QDWD
�2(q̇c) aims to highlight the orientation characteristics of
the local patch. Similar to the orientation feature of QIWD,
we consider the relations of QDs in two orthogonal lines to
derive 
t

2(q̇c) as follows:

� t
2(q̇c) = arctan

Dt (q̇m+4, q̇c) − Dt (q̇m, q̇c)

Dt (q̇n+4, q̇c) − Dt (q̇n, q̇c)
. (40)

The criterion to select m and n in (40) is the same as that in
the orientation feature of QIWD.

Fig. 3 shows an example of QDWD features for a
given color image. The image shown in Fig. 2(a) is used
here. Fig. 3(a)–(e) shows the differential features of QDWD
obtained using Dt , t = 1, 2, 3, 4, 6, respectively. Fig. 3(f)–(j)
shows the corresponding orientation features by setting m = 0
and n = 2. The results obtained by the fifth QD are not shown
here because they are equivalent to those of the third QD.
We can observe that there is a shape of human body in each
image, and the results of differential and orientation features
are different. Fig. 3(a) is similar to Fig. 3(b) because they are
both derived by intensity-based QDs. Fig. 3(c), obtained by

chromaticity-based QD, is different from Fig. 3(a) and (b).
The results in Fig. 3(d) and (e), achieved by combining
intensity and chromaticity differences, are more similar to
those derived by intensity-based QDs. These images represent
different characteristics of the color images and can be used
for recognition.

B. Discussion

Based on the QWLD framework, we proposed QDWD for
color images. QDWD applies QDs to measure the quaternionic
increments. QDs are robust metrics to describe the similarity
between pixels such that the derived descriptors reveal the
essential relationship in a local region. QDs also represent dif-
ferent image characteristics from various perspectives, which
offer options to design QDWD. For instance, QDWD obtained
by D2 will reflect more intensity characteristics of the color
image, while QDWD with D3 will focus on the chromaticity
feature of the image. Though QDWD is able to extract the
discriminate characteristics of color images, it may suffer from
the limitation of large computation cost. The reason lies in
that we need to rotate the quaternions and implement other
operations to obtain a QD, and all the QDs between the center
pixel and its surrounds ones are calculated for each local patch.
This limitation will restrict the performance of QDWD.

VI. PERFORMANCE ANALYSIS OF QDWD AND QIWD

In this section, several experiments will be carried out
to analyze the performances of the proposed QWLDs
from the following perspectives. First, we study the effects
of different parameter settings for QDWD and QIWD.
Second, we compare the performance of these two descriptors.
Third, QDWD and QIWD will be evaluated by comparing with
two closely related methods, i.e., QLBP and WLD.

The person reidentification task [35], [36] is used for
performance analysis in this section, which aims to classify
the persons that appear in nonoverlapping visual surveillance
systems. It is quite a challenging problem because it requires
robust and discriminate features. The i-LIDS Multiple-Camera
Tracking Scenario (MCTS) data set (119 persons and 476
images)2 [37], [38] is selected here. Experiments are set in
the following way [35]: all images of N persons are randomly
chosen from the original data set to form a test set, which
is further divided into two parts: a gallery set and a probe
set. Note that there is one image for each person in the
gallery set, and the rest images form the probe set. Two
images are considered to be the same person if they have
the smallest l1-norm distance [39]. The average cumulative
match characteristic (CMC) [35] is used to illustrate the ranked
matching rates over 10 times of the repeated matching. A
matching rate of the top rank score r means that the correct
reidentification is obtained from the top r ranks with respect
to N gallery images.

A. Evaluating Parameters of QIWDs

This experiment studies the performance of QIWDs that are
set to different parameters. First, let us consider the differential

2http://www.eecs.qmul.ac.uk/~jason/
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TABLE III

TOP-RANKED MATCHING RATES (IN PERCENT) OF QIWDs DERIVED
BY DIFFERENT PARAMETERS ON i-LIDS MCTS (N = 75)

feature of QIWD. As shown in (27), the parameter α is a
modulation of the real and imaginary parts of (26). Denote the
differential feature of QIWD with α by QIWDα,d . α is set to be
0.7, 0.8, . . . , 1.3 in this experiment. The experimental results
are given in the first part of Table III. We can find that α greatly
affects the performance of QIWDα,d . QIWD1.1,d obtains the
most satisfying results here, while QIWD1.0,d performs worst.
The matching rates of QIWD1.1,d are almost 10% higher than
those of QIWD1.0,d .

As mentioned before, the orientation feature is determined
by the selection of the orientation in the local patch.
Subsequently, the QR of color images is convoluted with the
matrix pairs described in Section IV-B, which are combina-
tions of those matrices in (34), to derive features. Based on
the four combinations of these matrices given in Section IV-B,
we denote the corresponding features by QIWDt,o,
t = 1, . . . , 4, respectively. The results of all QIWDt,o
are shown in the second part of Table III. The results indicate
that the matching rates of QIWD1,o and QIWD2,o are similar.
Same situations happen to QIWD3,o and QIWD4,o too.
When r is set to small values (r = 1, 5, 10), the results of
QIWD3,o and QIWD4,o are superior to those of QIWD1,o
and QIWD2,o, namely, the diagonal features of QIWD are
more discriminative than the horizontal and vertical features.
All of QIWDt,o perform equally if r is given larger values.

B. Evaluating QD Selection of QDWD

In this section, we study the performance of QDWDs using
different QDs. As aforementioned, the derived QDWDs will
differ if different QDs are selected, and the performance of
QDWD closely depends on the selected QD. In Section II-B,
we have introduced six QDs. Using these QDs, we can obtain
six QDWD features. Denote the differential and orientation
features of QDWD using the tth QD by QDWDt,d and
QDWDt,o. The parameters for QDWDt,o, (m, n) in (40)
are set to be (0, 2) and (1, 3). Denote the obtained features
by QDWDt,o1

and QDWDt,o2
, respectively. The person

number N is set to 75 here. The top matching rates are shown
in Table IV. The results of QDWD derived by the fifth QD
are not given here because they are the same as those derived
by the third one.

From Table IV, we can make the following key observations
from the experimental results.

TABLE IV

TOP-RANKED MATCHING RATES (IN PERCENT) OF QDWDs DERIVED
BY DIFFERENT QDs ON i-LIDS MCTS (N = 75)

1) QDWDt,d outperforms QDWDt,o in all situations by
about 5%–10%, which indicates that the differential
features of QDWD are more discriminative than its
orientation features.

2) QDWD1,d and QDWDo,d consider the Euclidean dis-
tance in the RGB color space. We can improve their
performances by designing suitable distances in the
quaternion domain. The features derived by the fourth
QD achieve the most satisfying results among all QDs.

3) Orientation features are sensitive to the selection of
direction pairs in (40). QDWDt,o2

gains better results
than QDWDt,o1

in all cases.

C. QDWD Versus QIWD

In this experiment, a comparison of QDWD and
QIWD is given. Since previous two experiments given in
Sections VI-A and VI-B are carried out with the same
settings, we can first observe Tables III and IV to compare
the performances of QDWD and QIWD, respectively. Among
all methods, QIWD1.1,d obtains the best results. Considering
differential features, the results of different QDWDt,ds are
more stable than those of QIWDα,d . For orientation features,
QIWDt,o obviously outperforms QDWDt,o.

Differential and orientation features represent different char-
acteristics of the original color image. Here, we apply a
simple way to fuse them and use to classify. Two examples
of each descriptor are constructed and evaluated here. The
first example corresponds to the optimal parameter settings
given in Section VI-A (or Section VI-B). The second exam-
ple is randomly chosen from other possible choices. They
are QDWD_1 = [QDWD3,d; QDWD3,o2

], QDWD_2 =
[DQDW6,d; QDWD6,o2

], QIWD_1 = [QIWD1.1,d; QIWD3,o],
and QIWD_2 = [QIWD1.2,d; QIWD4,o]. The experimental
results are shown in Fig. 4. We can find that different degrees
of improvements can be achieved by combining differen-
tial and orientation features together. The performances of
QDWD_1 and QDWD_2 are similar, while the results of
QIWD_2 are about 4% higher than those of QIWD_1. In most
cases, the QIWD features obtain better matching results than
the QDWD features in the person reidentification task.
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Fig. 4. CMC results of QDWD and QIWD on i-LIDS MCTS (N = 75).

TABLE V

TOP-RANKED MATCHING RATES (IN PERCENT) OF
QWLD AND QLBP ON i-LIDS MCTS (N = 80)

D. QWLD Versus QLBP

In this experiment, QWLD is compared with another
quaternionic local descriptor QLBP, which is an extension
of classical LBP in the quaternionic domain. The i-LIDS
MCTS data set is still used here. Performing CTQ on
the QR of the color image with different unit quaternions,
we can obtain several QLBP features. As for the descrip-
tions in [26], we derive three QLBP features, denoted by
QLBPi , QLBP j , and QLBPk , by Clifford translating the
image by i, j, and k, respectively. The differential and ori-
entation of QIWD, QIWD1.1,d and QIWD4,o, are selected for
comparison. To QDWD, the following features are chosen:
QDWD6,d and QDWD6,o2

. The person number N is set
to 80 here. The matching results are given in Table V. We can
observe that QIWD1.1,d outperforms all other methods, and
QLBPi works better than those of QIWD4,o. In most cases, the
matching rates of QIWD3,o are higher than those of QLBP j
and QLBPk . The results of QDWD6,d are comparable with
those of QLBPi .

We also concatenate all QLBP features together to get a
new feature vector, denoted by QLBPi, j,k . Similar operations
are conducted to the corresponding QWLD features, and
the derived features are denoted as QIWD = [QIWD1.1,d;
QIWD4,o] and QDWD = [QDWD6,d; QDWD6,o2

]. The
matching results are also shown in Table V. QLBPi, j,k
achieves improvements about 2%, while the improvements
of QIWD are more significant than the results of a single
differential or orientation feature. QIWD still keeps about 4%
higher than QLBPi, j,k in all cases. QDWD outperforms QLBP
when r is set to small values.

TABLE VI

TOP-RANKED MATCHING RATES (PERCENT) OF QWLD
AND WLD ON i-LIDS MCTS

E. QWLD Versus WLD

Since QWLD is an extension of WLD in the quater-
nionic domain, a detailed comparison of them is given in
this experiment using the i-LIDS MCTS data set. For the
color image, the WLD features are derived by concatenating
the descriptors extracted from each color channel together,
namely, WLD = [WLDR; WLDG; WLDB]. Each element in
WLD contains both the differential and orientation features.
To comprehensively reveal the color characteristics, two
QIWD features, denoted by QIWD1 = [QIWD0.75,d;
QIWD1,o] and QIWD2 = [QIWD1.25,d; QIWD3,o], are
chosen to form the final descriptors for QIWD. Similarly,
two QDWD features, QDWD4 = [QDWD4,d; QDWD4,o2

]
and QDWD6 = [QDWD6,d; QDWD6,o2

], are concatenated
together for QDWD. The person number N is set to 30,
60, and 90. The experimental results are shown in Table VI.
Observing Table VI, it can be seen that WLD and QDWD
achieve comparable performances in this situation. WLD out-
performs QDWD when N is set to 30 and 90, while QDWD
obtains better results when N is equal to 60. The matching
rates of QIWD surpass those of WLD and QDWD in all cases
because QIWD takes more relations among color channels into
account. These results indicate that considering the interac-
tions between color channels can improve the discriminative
capacity of a descriptor.

VII. PERFORMANCE EVALUATION IN

VARIOUS APPLICATIONS

In this section, experiments will be carried out to evaluate
the proposed QWLD descriptors by comparing with other
state-of-the-art local descriptors with different applications.

A. Experimental Data Sets

As aforementioned, local descriptors have extensive
applications. In this paper, we apply the following problems
for evaluation.

1) Texture Classification: This is one conventional appli-
cation for local descriptors. The color texture data set,
KTH-TIPS2-a [40] (4395 images for 11 materials),
is selected here. This data set consists of four physical
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planar samples of each of the 11 materials (including
wood, wool, and linen). Specifically, these samples are
obtained under four different illumination degrees at
nine scales and three different pose changes. In this
test, those texture images with a size of 200 × 200 are
considered such that a total of 4395 texture images are
used.

2) Face Analysis: Two face analysis tasks are selected
for evaluation, namely, kinship verification and face
recognition. Kinship verification is a novel face analysis
problem to determine whether there is a kinship relation
between face image pairs. To tackle this problem, the
first step is to extract features from facial images. It is
a challenging problem because there may exist great
pose, illumination, and aging variations between the
kinship images. Two standard data sets, KinFaceW-I
(533 face image pairs) and KinFaceW-I (1000 face
image pairs) [41], [42], are chosen. For face recogni-
tion, the Nanjing University of Science and Technology
(NUST) real-world face recognition (RWFR) database3

is used here. It contains 2400 face images of 100
subjects. For each person, half of the images are of
high quality, while the others are captured under poor
environments.

3) Person Reidentification: Except the i-LIDS MCTS data
set, two other standard data sets are used, namely, ETHZ
(146 persons and 8580 images)4 [43] and viewpoint
invariant pedestrian recognition (VIPER) (632 persons
and 1246 images)5 [44].

B. Texture Classification

Local descriptors have shown impressed performances in
texture classification. In this experiment, we utilize the color
texture data set, KTH-TIPS2-a [40], to evaluate QIWD and
QDWD. The experiment here is conducted as in [30] and [40],
namely, three images are randomly selected from the
whole data set for training of each material and rest
of the images are applied as the test set. The nearest
neighbor classifier is used here with l1-norm as the dis-
tance measurement between feature vectors. This experi-
ment is repeated four times by randomly choosing the
training samples, and the average value over four runs
is reported here. The proposed descriptors are compared
with the following approaches: QLBP [26], WLD [30],
LBP [45], local color vector binary pattern (LCVBP) [46],
and discriminative robust local binary pattern (DRLBP) and
discriminative robust local ternary pattern (DRLTP) [47],
respectively. LBP and WLD here are derived by concatenat-
ing all those descriptors extracted from each color channel
together, and the rest methods are also derived by taking
all color information into account. The QWLD features used
in Section VI-E are selected for evaluation. The comparison
results are shown in Table VII. It can be seen that QIWD
achieves the most satisfying result in this situation. WLD,

3http://pcalab.njust.edu.cn/
4http://www.umiacs.umd.edu/~schwartz/datasets.html
5http://vision.soe.ucsc.edu/?q=node/178

TABLE VII

RECOGNITION RESULTS ON TEXTURE DATA SET
KTH-TIPS2-a USING DIFFERENT METHODS

TABLE VIII

CLASSIFICATION ACCURACIES (IN PERCENT) OF DIFFERENT FEATURE

REPRESENTATION METHODS ON TWO KinFace DATA SETS

LCVBP, and QLBP obtain similar performances, and they
outperform LBP, DRLBP, and QDWD. DRLTP surpasses
LCVBP and QLBP by about 1%, but it works worse
than QIWD.

C. Face Analysis

1) Kinship Verification: As mentioned previously, two data
sets, KinFaceW-I and KinFaceW-II, are employed for evalu-
ation. Four kinship relations are considered for verification:
father–son (F-S), father–daughter (F-D), mother–son (M-S),
and mother–daughter (M-D). More details about the data sets
can be found in [42]. The experiments here are implemented
as in [42], where the neighborhood repulsed metric learning
method is carried out using the proposed QWLD features to
determine the relation between image pairs.

The following local descriptors are chosen for comparison
in this experiment, namely, QLBP [26], WLD [30], LBP [45],
and LCVBP [46]. Note that these approaches are derived
by applying all color information. The results are reported
in Table VIII. For the KinFaceW-I data set, QIWD outperforms
other methods for all relation verification cases by different
degrees, and LBP achieves the second best performance. The
average classification rate of QIWD is higher than that of LBP
by more than 2%. QDWD, QLBP, and LCVBP obtain similar
results in this situation. Considering the KinFaceW-II data set,
QLBP gains the most satisfying results among all LBP-based
methods, and it works slightly better than WLD. For the
WL-based schemes, QIWD acquires the best classification
rates and surpasses QLBP.
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TABLE IX

TOP-RANKED MATCHING RATES (IN PERCENT) ON THE NUST RWFR DATA SET

2) Face Recognition: This experiment evaluates the
performance of QWLD for face recognition using the NUST
RWFR database. The following local descriptors are chosen
for comparison, including WLD [30], LBP [45], LCVBP [46],
robust LBP (RLBP) [48], completed LBP (CLBP) [49], and
upper LBP (ULBP) and lower LBP (LLBP) [50]. For WLD,
LBP, RLBP, CLBP, LLBP, and ULBP, the features are derived
from each color components individually and concatenated
together to get a final feature vector, while the LCVBP
descriptor is extracted from the vector representation of the
color images. Face recognition here is carried out as the
person reidentification task in Section VI. Table IX shows
the recognition results of all descriptors when the number
of subjects N is set to 30, 60, and 90. We can find that
LCVBP achieves the most satisfying performance among all
LBP-based methods, and WLD obtains similar results as
LCVBP. For QWLD descriptors, QDWD obtains close match-
ing rates with WLD, and QIWD gains the best performance
among all these methods.

D. Person Reidentification

In this experiment, the proposed QWLD is compared with
several other local descriptors using all three person reidentifi-
cation data sets. The local descriptors used in Section VII-C2
are also selected here. Besides, Zheng’s method [35] and
the histogram of oriented gradients (HOG) descriptor [51]
are also considered. The HOG descriptor is extracted from
all color channels as WLD- and the LBP-based methods.
Zheng’s method is designed for person reidentification, which
extracts features from both the color and texture information
of the original images.6 The corresponding results are shown
in Fig. 5.

Let us first see the experimental results on i-LIDS MCTS.
The person number N is set to 30, 60, and 90, respectively.
We can find that LCVBP, WLD, QDWD, and QIWD
obtain better results than other methods on the whole.
LCVBP and WLD achieve comparable performances when
N = 30 and 60. As N increases to 90, the matching results
of WLD are 2% higher than those of LCVBP. In this data set,
QIWD leads to about 2%–3% than the second best method in
most cases. When N is set to 60 and 90, QDWD achieves the
second best results.

6http://www.eecs.qmul.ac.uk/~jason/ilids.html

It is more challenging to reidentify the persons in the
VIPER data set because it only contains two images for each
person. We set N to 150, 300, and 450, respectively. In this
data set, CLBP, Zheng’s method, and QIWD achieve more
satisfying performances, while RLBP obtains the worst results.
In the situation of N = 150, the matching rates of CLBP,
Zheng’s method, and QIWD are comparable when r is equal
to 1 and 2, while QIWD outperforms other methods as r is
with larger values. If N increases to 300 and 450, QIWD
obtains the best results when r is larger than 15.

The reidentification results on the ETHZ data set are finally
given. Unlike VIPER, ETHZ contains about 58 images for
per person. The person number N is set to 30, 60, and 90,
respectively. In this test, LCVBP, WLD, QDWD, and QIWD
are the best three methods, while RLBP and LLBP perform
the worst. The results of LCVBP and WLD are quite similar
and slightly better than QDWD. When r is set to 1 or 5, QIWD
may exceed RLBP and LLBP by about 10%, and it obtains
results comparable with LCVBP and WLD. When r increases,
the matching rates of QIWD are superior to LCVBP and WLD
by about 1% to 2% in all cases.

E. Time Complexity Analysis

Time complexity is an important aspect to evaluate a
descriptor. In this section, we theoretically compare the
computation cost of QWLD with LBP, WLD, and SIFT.
Considering a color image with size of M × N , the time com-
plexities of LBP, WLD, and scale-invariant feature transform
(SIFT) are as follows [30]:

OLBP = λ1 M N (41)

OWLD = λ2 M N (42)

OSIFT ≈ λ3(h1h2)(g1g2)M N (43)

where λ1, λ2, and λ3 are constants for the computation costs
of each pixel in corresponding descriptor through additions,
divisions, and filtering operations, respectively. h1 and h2 are
the levels of octave and scales of each octave, respectively.
g1 and g2 are the sizes of the convolution mask. Some
improved LBP methods may have the same time complexities
as LBP. Equations (41)–(43) indicate that LBP and WLD are
more efficient than SIFT.

Compared with WLD, the main additional computation
cost of QIWD lies in the calculation of the local differences
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Fig. 5. CMC results of different feature extraction methods on three used person reidentification data sets. (a)–(c) Results of i-LIDS MCTS. (d)–(f) Results
of VIPER. (g)–(i) Results of ETHZ.

between the center pixel and its surrounding ones. This pro-
cedure is implemented by a convolution of a z1 ∗ z2 template
for a given image. In this paper, the size of template is set
to 3 × 3 as in (30) and (34). Therefore, the time complexity
of QIWD is as follows:

OQIWD = λ4(z1z2)M N (44)

where λ4 is a constant and has the same meaning as the
previous ones. For QDWD, if we directly calculate the QD by
its definition, it will take a large computation cost. An alter-
native way is to simplify the calculation of the QD using the
vector representation. For example, D3 and D5 are equivalent
to (47) and (50). Hence, the time complexity of QDWD
turns to

OQDWD = λ5 M N (45)

where λ5 is similar to the previous ones. Observing (41)–(45),
we can find that QIWD takes larger time complexity than
LBP and WLD, but it is more efficient than SIFT. Once the
computation of QD is optimized, QDWD will achieve the
similar time complexity as LBP and WLD.

VIII. CONCLUSION

In this paper, we proposed QWLD as a novel framework
to derive local descriptors for color image feature extraction.
QWLD is based on the QR of color images and WL.
As a result, it contains the advantages of both QR and WL.
Two quaternionic descriptors QDWD and QIWD were derived
based on the QWLD framework. Experiments were carried
out to evaluate the performances of the proposed quaternionic
descriptors by different color image recognition problems, and
the comparison results have shown the effectiveness of derived
descriptors. To further improve the performance of QWLD,
our future work will propose fast calculation algorithms
for QDs, design more discriminative QDs for quaternions, and
find suitable functions to describe the quaternionic increment.

APPENDIX

PROOF OF (13)

Proof: Rewrite μ̇, ρ̇, q̇1, and q̇2 into the vector
form as follows, respectively, μ̇ = (0,μ) = (0, (

√
3/3),

(
√

3/3), (
√

3/3))T , ρ̇ = e(π/4)μ̇ = (ρ,ρ) = ((
√

2/2),
(
√

6/6), (
√

6/6), (
√

6/6))T, q̇1 = (0, q1) = (0, r1, g1, b1)
T,
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and q̇2 = (0, q2) = (0, r2, g2, b2)
T . Then q̇1q̇2 can be

expressed by

q̇1q̇2 = (−q1 • q2, q1 × q2) = −q1 • q2 + q1 × q2 (46)

where • and × denote the vector dot product and cross
product, respectively.

According the definition of D3 in (8) and (46), we have

1

2
[(ρ̇q̇1ρ̇

∗ − ρ̇∗q̇1ρ̇) − (ρ̇q̇2ρ̇
∗ − ρ̇∗q̇2ρ̇)]

= −2ρ(ρ × q1) + 2ρ(ρ × q2) = μ × (q2 − q1)

=
√

3

3

⎛

⎝
b1 − b2 − g1 + g2
r1 − r2 − b1 + b2
g1 − g2 − r1 + r2

⎞

⎠ �

⎛

⎝
r4
g4
b4

⎞

⎠. (47)

Similarly, (10) turns to

q3 = 2(μ • q1)μ + (q2 − q1)

= 1

3

⎛

⎝
−r1 + 2g1 + 2b1 + 3r2
2r1 − g1 + 2b2 + 3g2
2r1 + 2g1 − b1 + 3b2

⎞

⎠. (48)

Then
r3 + g3 + b3

3
= r1 + g1 + b1 + r2 + g2 + b2

3
. (49)

Rewriting D5 into its vector form, it has the following:

⎛

⎝
r3
g3
b3

⎞

⎠ −

⎛

⎜
⎜
⎜
⎜
⎝

r3 + g3 + b3

3
r3 + g3 + b3

3
r3 + g3 + b3

3

⎞

⎟
⎟
⎟
⎟
⎠

= 1

3

⎛

⎝
−2r1 + g1 + b1 + 2r2 − g2 − b2
r1 − 2g1 + b1 − r2 + 2g2 − b2
r1 + g1 − 2b1 − r2 − g2 + 2b2

⎞

⎠ �

⎛

⎝
r5
g5
b5

⎞

⎠. (50)

We can find that r4 �= r5, g4 �= g5, and b4 �= b5, but they have
the following relation:

√
r2

4 + g2
4 + b2

4 =
√

r2
5 + g2

5 + b2
5. (51)

Now we derive the desired result in (13).
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